Roll No. Total Printed Pages - 5

F - 3855

M.A./M.Sc. (Previous) Examination, 2022 MATHEMATICS Paper Fifth (Advance Discrete Mathematics)

Time : Three Hours]

[Maximum Marks:100

Note: Attempt any two parts from each question. All questions carry equal marks.

Unit - I

1. (a) Prepare the truth table for

$$(p \Leftrightarrow q) \land (q \Leftrightarrow r) \Rightarrow (p \Leftrightarrow r)$$

(b) If g is a homomorphism from a commutative semigroup (S,*) onto a semi group (T,\oplus) then show that (T,\oplus) is also commutative semi

P.T.O.

group.

- (c) Show that for any commutative monoid (M,*) the set of idempotent element of M forms a submonoid.
- 2. (a) $L = \{1, 2, 3, 4, 6, 12\}, (L, '1'),$ $a \lor b = LCM(a, b), a \land b = hcf(a, b).$ Show that (L, '1') is a lattice but it is not complemented lattice ('1' stands for divide)
 - (b) Show that for Boolean algebra $(B, \pm i')$ $(a+b)(b+c)\cdot(c+a) = a.b+b.c+c.a$ where $a,b,c,\in B$
 - (c) Write the following function into conjunctive normal form f(x, y, z) = (x + y + z), (xy + x'z)'

Unit - III

- 3. (a) Show that a complete graph with five vertices is not a planar graph.
 - (b) State and prove Euler's formula for connected planar graph.
- F 3855

- (c) Show that a tree with n vertices has (n 1) edges.
- 4. (a) Explain the finite state machine and their transition table and transition diagrams.
 - (b) Minimize finite state machine M, where M is given by the following state table.

State	input		output
	0	1	
\Rightarrow S_0	$S_{_3}$	S ₁	1
S ₁	S_4	S ₁	0
S ₂	$S_{_3}$	S ₀	1
$S_{_3}$	S_2	$S_{_3}$	0
S_4	S ₁	S ₀	1

(c) Find a deterministic accepter equivalent to $M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, \{q_2\})\delta$ is given in table-

State/ Σ	а	b
$\rightarrow q_0$	q_{0}, q_{1}	q_2
q_1	${q}_0$	q_1
(q_2)		q_{0}, q_{1}

- 5. (a) Let $A = \{0,1\}$, show that the following expressions are regular expression over A.
 - (i) $0^* (0+1)^*$
 - (ii) $00^* (1+0)^*$
 - (iii) $(01)^* (01+1^*)$

Also find regular sets corresponding to these regular expression.

(b) Construct the grammar for the language $L = \left\{ a^n b a^m | m, n, \ge 1 \right\}$ and for the string $a^4 b a^5$ write the derivation. [5]

(c) Explain regular grammar context free grammar and context sensitive grammar and give examples related to the grammars.